$0.00
Google Professional-Data-Engineer Exam Dumps

Google Professional-Data-Engineer Exam Dumps

Google Professional Data Engineer Exam

Total Questions : 239
Update Date : June 20, 2024
PDF + Test Engine
$65 $95
Test Engine
$55 $85
PDF Only
$45 $75

Money back Guarantee

When it comes about your bright future with career Examforsure takes it really serious as you do and for any valid reason that our provided Google Professional-Data-Engineer exam dumps haven't been helpful to you as, what we promise, you got full option to feel free claiming for refund.

100% Real Questions

Examforsure does verify that provided Google Professional-Data-Engineer question and answers PDFs are summed with 100% real question from a recent version of exam which you are about to perform in. So we are sure with our wide library of exam study materials such Google exam and more.

Security & Privacy

Free downloadable Google Professional-Data-Engineer Demos are available for you to download and verify that what you would be getting from Examforsure. We have millions of visitor who had simply gone on with this process to buy Google Professional-Data-Engineer exam dumps right after checking out our free demos.


Professional-Data-Engineer Exam Dumps


What makes Examforsure your best choice for preparation of Professional-Data-Engineer exam?

Examforsure is totally committed to provide you Google Professional-Data-Engineer practice exam questions with answers with make motivate your confidence level while been at exam. If you want to get our question material, you need to sign up Examforsure, as there are tons of our customers all over the world are achieving high grades by using our Google Professional-Data-Engineer exam dumps, so can you also get a 100% passing grades you desired as our terms and conditions also includes money back guarantee.

Key to solution Preparation materials for Google Professional-Data-Engineer Exam

Examforsure has been known for its best services till now for its final tuition basis providng Google Professional-Data-Engineer exam Questions and answer PDF as we are always updated with accurate review exam assessments, which are updated and reviewed by our production team experts punctually. Provided study materials by Examforsure are verified from various well developed administration intellectuals and qualified individuals who had focused on Google Professional-Data-Engineer exam question and answer sections for you to benefit and get concept and pass the certification exam at best grades required for your career. Google Professional-Data-Engineer braindumps is the best way to prepare your exam in less time.

User Friendly & Easily Accessible

There are many user friendly platform providing Google exam braindumps. But Examforsure aims to provide latest accurate material without any useless scrolling, as we always want to provide you the most updated and helpful study material as value your time to help students getting best to study and pass the Google Professional-Data-Engineer Exams. you can get access to our questions and answers, which are available in PDF format right after the purchase available for you to download. Examforsure is also mobile friendly which gives the cut to study anywhere as long you have access to the internet as our team works on its best to provide you user-friendly interference on every devices assessed. 

Providing 100% verified Google Professional-Data-Engineer (Google Professional Data Engineer Exam) Study Guide

Google Professional-Data-Engineer questions and answers provided by us are reviewed through highly qualified Google professionals who had been with the field of Google from a long time mostly are lecturers and even Programmers are also part of this platforms, so you can forget about the stress of failing in your exam and use our Google Professional-Data-Engineer-Google Professional Data Engineer Exam question and answer PDF and start practicing your skill on it as passing Google Professional-Data-Engineer isn’t easy to go on so Examforsure is here to provide you solution for this stress and get you confident for your coming exam with success garneted at first attempt. Free downloadable demos are provided for you to check on before making the purchase of investment in yourself for your success as our Google Professional-Data-Engineer exam questions with detailed answers explanations will be delivered to you.


Google Professional-Data-Engineer Sample Questions

Question # 1

You have a query that filters a BigQuery table using a WHERE clause on timestamp and ID columns. By using bq query – -dry_run you learn that the query triggers a full scan of the table, even though the filter on timestamp and ID select a tiny fraction of the overall data. You want to reduce the amount of data scanned by BigQuery with minimal changes to existing SQL queries. What should you do?

A. Create a separate table for each ID.
B. Use the LIMIT keyword to reduce the number of rows returned.
C. Recreate the table with a partitioning column and clustering column.
D. Use the bq query - -maximum_bytes_billed flag to restrict the number of bytes billed.



Question # 2

You work for a bank. You have a labelled dataset that contains information on already granted loan application and whether these applications have been defaulted. You have been asked to train a model to predict default rates for credit applicants. What should you do?

A. Increase the size of the dataset by collecting additional data.
B. Train a linear regression to predict a credit default risk score.
C. Remove the bias from the data and collect applications that have been declined loans.
D. Match loan applicants with their social profiles to enable feature engineering



Question # 3

You’ve migrated a Hadoop job from an on-prem cluster to dataproc and GCS. Your Spark job is a complicated analytical workload that consists of many shuffing operations and initial data are parquet files (on average 200-400 MB size each). You see some degradation in performance after the migration to Dataproc, so you’d like to optimize for it. You need to keep in mind that your organization is very cost-sensitive, so you’d like to continue using Dataproc on preemptibles (with 2 non-preemptible workers only) for this workload. What should you do?

A. Increase the size of your parquet files to ensure them to be 1 GB minimum.
B. Switch to TFRecords formats (appr. 200MB per file) instead of parquet files.
C. Switch from HDDs to SSDs, copy initial data from GCS to HDFS, run the Spark job and copy results back to GCS.
D. Switch from HDDs to SSDs, override the preemptible VMs configuration to increase the boot disk size.



Question # 4

You have a data pipeline with a Cloud Dataflow job that aggregates and writes time series metrics to Cloud Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. Which two actions should you take? (Choose two.) 

A. Configure your Cloud Dataflow pipeline to use local execution
B. Increase the maximum number of Cloud Dataflow workers by setting maxNumWorkers in PipelineOptions
C. Increase the number of nodes in the Cloud Bigtable cluster
D. Modify your Cloud Dataflow pipeline to use the Flatten transform before writing to Cloud Bigtable
E. Modify your Cloud Dataflow pipeline to use the CoGroupByKey transform before writing to Cloud Bigtable



Question # 5

Your neural network model is taking days to train. You want to increase the training speed. What can you do?

A. Subsample your test dataset.
B. Subsample your training dataset.
C. Increase the number of input features to your model.
D. Increase the number of layers in your neural network.



Question # 6

Your company has a hybrid cloud initiative. You have a complex data pipeline that moves data between cloud provider services and leverages services from each of the cloud providers. Which cloud-native service should you use to orchestrate the entire pipeline?

A. Cloud Dataflow
B. Cloud Composer
C. Cloud Dataprep
D. Cloud Dataproc



Question # 7

A data scientist has created a BigQuery ML model and asks you to create an ML pipeline to serve predictions. You have a REST API application with the requirement to serve predictions for an individual user ID with latency under 100 milliseconds. You use the following query to generate predictions: SELECT predicted_label, user_id FROM ML.PREDICT (MODEL ‘dataset.model’, table user_features). How should you create the ML pipeline?

A. Add a WHERE clause to the query, and grant the BigQuery Data Viewer role to the application service account.
B. Create an Authorized View with the provided query. Share the dataset that contains the view with the application service account.
C. Create a Cloud Dataflow pipeline using BigQueryIO to read results from the query. Grant the Dataflow Worker role to the application service account.
D. Create a Cloud Dataflow pipeline using BigQueryIO to read predictions for all users from the query. Write the results to Cloud Bigtable using BigtableIO. Grant the Bigtable Reader role to the application service account so that the application can read predictions for individual users from Cloud Bigtable.



Question # 8

You work for a global shipping company. You want to train a model on 40 TB of data to predict which ships in each geographic region are likely to cause delivery delays on any given day. The model will be based on multiple attributes collected from multiple sources. Telemetry data, including location in GeoJSON format, will be pulled from each ship and loaded every hour. You want to have a dashboard that shows how many and which ships are likely to cause delays within a region. You want to use a storage solution that has native functionality for prediction and geospatial processing. Which storage solution should you use?

A. BigQuery
B. Cloud Bigtable
C. Cloud Datastore
D. Cloud SQL for PostgreSQL



Question # 9

You are designing a data processing pipeline. The pipeline must be able to scale automatically as load increases. Messages must be processed at least once, and must be ordered within windows of 1 hour. How should you design the solution? 

A. Use Apache Kafka for message ingestion and use Cloud Dataproc for streaming analysis.
B. Use Apache Kafka for message ingestion and use Cloud Dataflow for streaming analysis.
C. Use Cloud Pub/Sub for message ingestion and Cloud Dataproc for streaming analysis.
D. Use Cloud Pub/Sub for message ingestion and Cloud Dataflow for streaming analysis.



Question # 10

You are designing storage for 20 TB of text files as part of deploying a data pipeline on Google Cloud. Your input data is in CSV format. You want to minimize the cost of querying aggregate values for multiple users who will query the data in Cloud Storage with multiple engines. Which storage service and schema design should you use?

A. Use Cloud Bigtable for storage. Install the HBase shell on a Compute Engine instance to query the Cloud Bigtable data.
B. Use Cloud Bigtable for storage. Link as permanent tables in BigQuery for query.
C. Use Cloud Storage for storage. Link as permanent tables in BigQuery for query.
D. Use Cloud Storage for storage. Link as temporary tables in BigQuery for query.



Question # 11

You are creating a new pipeline in Google Cloud to stream IoT data from Cloud Pub/Sub through Cloud Data flow to BigQuery. While previewing the data, you notice that roughly 2% of the data appears to be corrupt. You need to modify the Cloud Dataflow pipeline to filter out this corrupt data. What should you do?

A. Add a SideInput that returns a Boolean if the element is corrupt.
B. Add a ParDo transform in Cloud Dataflow to discard corrupt elements.
C. Add a Partition transform in Cloud Dataflow to separate valid data from corrupt data.
D. Add a GroupByKey transform in Cloud Dataflow to group all of the valid data together and discard the rest.



Question # 12

You have data pipelines running on BigQuery, Cloud Dataflow, and Cloud Dataproc. You need to perform health checks and monitor their behavior, and then notify the team managing the pipelines if they fail. You also need to be able to work across multiple projects. Your preference is to use managed products of features of the platform. What should you do? 

A. Export the information to Cloud Stackdriver, and set up an Alerting policy
B. Run a Virtual Machine in Compute Engine with Airflow, and export the information to Stackdriver
C. Export the logs to BigQuery, and set up App Engine to read that information and send emails if you find a failure in the logs
D. Develop an App Engine application to consume logs using GCP API calls, and send emails if you find a failure in the logs